The Pukánszky invariant for masas in group von Neumann factors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pukánszky Invariant for Masas in Group Von Neumann Factors

The Pukánszky invariant associates to each maximal abelian self–adjoint subalgebra (masa) A in a type II1 factor M a certain subset ot N ∪ {∞}, denoted Puk(A). We study this invariant in the context of factors generated by infinite conjugacy class discrete countable groups G with masas arising from abelian subgroups H. Our main result is that we are able to describe Puk(V N(H)) in terms of the ...

متن کامل

An Invariant for Subfactors in the Von Neumann Algebra of a Free Group

In this paper we are considering a new invariant for subfac-tors in the von Neumann algebra L(F k) of a free group. This invariant is obtained by computing the Connes' invariant for the enveloping von Neumann algebra of the iteration of the Jones' basic construction for the given inclusion. In the case of the subfactors considered in Po2], Ra1] this invariant is easily computed as a relative in...

متن کامل

The classification problem for von Neumann factors

We prove that it is not possible to classify separable von Neumann factors of types II1, II∞ or IIIλ, 0 ≤ λ ≤ 1, up to isomorphism by a Borel measurable assignment of “countable structures” as invariants. In particular the isomorphism relation of type II1 factors is not smooth. We also prove that the isomorphism relation for von Neumann II1 factors is analytic, but is not Borel.

متن کامل

Values of the Pukánszky Invariant in Free Group Factors and the Hyperfinite Factor

Abstract Let A ⊆ M ⊆ B(L2(M)) be a maximal abelian self-adjoint subalgebra (masa) in a type II1 factor M in its standard representation. The abelian von Neumann algebra A generated by A and JAJ has a type I commutant which contains the projection eA ∈ A onto L2(A). Then A′(1− eA) decomposes into a direct sum of type In algebras for n ∈ {1, 2, · · · ,∞}, and those n’s which occur in the direct s...

متن کامل

Bimodules over Cartan MASAs in von Neumann algebras, norming algebras, and Mercer’s Theorem

In a 1991 paper, R. Mercer asserted that a Cartan bimodule isomorphism between Cartan bimodule algebras A1 and A2 extends uniquely to a normal ∗-isomorphism of the von Neumann algebras generated by A1 and A2 (Corollary 4.3 of Mercer, 1991). Mercer’s argument relied upon the Spectral Theorem for Bimodules of Muhly, Saito and Solel, 1988 (Theorem 2.5, there). Unfortunately, the arguments in the l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2005

ISSN: 0019-2082

DOI: 10.1215/ijm/1258138021